Números Cuánticos
Los números cuánticos son valores numéricos que nos indican las características de los electrones de los átomos, esto esta basado desde luego en la teoría atómica de Neils Bohr que es el modelo atómico mas aceptado y utilizado en los últimos tiempos.
Los números atómicos más importantes son cuatro:
Los números atómicos más importantes son cuatro:
Número Cuántico Principal (n)
El número cuántico principal nos indica en que nivel se encuentra el electrón, este valor toma valores enteros del 1 al 7.
Número Cuántico Secundario (d)
Este número cuántico nos indica en que subnivel se encuentra el electrón, este número cuántico toma valores desde 0 hasta (n - 1), según el modelo atómico de Bohr - Sommerfield existen además de los niveles u orbitas circulares, ciertas órbitas elípticas denominados subniveles. Según el número atómico tenemos los numeros:
l = 6 i
Número Cuántico Magnético (m)
El número cuántico magnético nos indica las orientaciones de los orbitales magnéticos en el espacio, los orbitales magnéticos son las regiones de la nube electrónica donde se encuentran los electrones, el número magnético depende de l y toma valores desde -l hasta l.
Número Cuántico de Spin (s)
El número cuántico de spin nos indica el sentido de rotación en el propio eje de los electrones en un orbital, este número toma los valores de -1/2 y de 1/2.
De esta manera entonces se puede determinar el lugar donde se encuentra un electrón determinado, y los niveles de energía del mismo, esto es importante en el estudio de las radiaciones, la energía de ionización, así como de la energía liberada por un átomo en una reacción.
Configuración electronica
Número Cuántico Magnético (m)
El número cuántico magnético nos indica las orientaciones de los orbitales magnéticos en el espacio, los orbitales magnéticos son las regiones de la nube electrónica donde se encuentran los electrones, el número magnético depende de l y toma valores desde -l hasta l.
Número Cuántico de Spin (s)
El número cuántico de spin nos indica el sentido de rotación en el propio eje de los electrones en un orbital, este número toma los valores de -1/2 y de 1/2.
De esta manera entonces se puede determinar el lugar donde se encuentra un electrón determinado, y los niveles de energía del mismo, esto es importante en el estudio de las radiaciones, la energía de ionización, así como de la energía liberada por un átomo en una reacción.
Configuración electronica
En física y química, la configuración electrónica es la manera en la cual los electrones se estructuran o se modifican en un átomo, molécula o en otra estructura física, de acuerdo con el modelo de capas electrónico, en el cual la función de onda del sistema se expresa como un producto de orbitales antisimetrizado.[1] [2] Cualquier conjunto de electrones en un mismo estado cuántico deben cumplir el principio de exclusión de Pauli al ser partículas idénticas. Por ser fermiones (partículas de espín semientero) el principio de exclusión de Pauli nos dice que la función de onda total (conjunto de electrones) debe ser antisimétrica.[3] Por lo tanto, en el momento en que un estado cuántico es ocupado por un electrón, el siguiente electrón debe ocupar un estado cuántico diferente.
En los átomos, los estados estacionarios de la función de onda de un electrón en una aproximación no relativista (los estados que son función propia de la ecuación de Schrödinger
en donde
es el hamiltoniano monoelectrónico correspondiente; para el caso general hay que recurrir a la ecuación de Dirac de la mecánica cuántica de campos) se denominan orbitales atómicos, por analogía con la imagen clásica de los electrones orbitando alrededor del núcleo. Estos estados, en su expresión más básica, se pueden describir mediante cuatro números cuánticos: n, l, m y ms, y, en resumen, el principio de exclusión de Pauli implica que no puede haber dos electrones en un mismo átomo con los cuatro valores de los números cuánticos iguales.
De acuerdo con este modelo, los electrones pueden pasar de un nivel de energía orbital a otro ya sea emitiendo o absorbiendo un cuanto de energía, en forma de fotón. Debido al principio de exclusión de Pauli, no más de dos electrones pueden ocupar el mismo orbital y, por tanto, la transición se produce a un orbital en el cual hay una vacante.
No hay comentarios:
Publicar un comentario